1.工程问题公式大全
1、工作总量=工作时间*工作效率2、工作时间=工作总量÷工作效率3、工作效率=工作总量÷工作时间4、合作工作时间=工作总量÷工作效率和(一般将工作总量看作单位1)扩展资料:举例说明:一件工作,甲做15天可完成,乙做10天可完成,问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1,所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,再根据基本数量关系式,得到工作量÷工作效率=工作时间1÷(1/15+1/10)=6(天)答:两人合作需要6天.参考资料来源:百度百科-工程问题。
2.工程问题的公式
在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是 工作量=工作效率*时间. 在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”. 举一个简单例子. 一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成? 一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位, 再根据基本数量关系式,得到 所需时间=工作量÷工作效率 =6(天)• 两人合作需要6天. 这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的. 为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是 30÷(3+ 2)= 6(天) 数计算,就方便些. ∶2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也 需时间是 因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些. 一、两个人的问题 标题上说的“两个人”,也可以是两个组、两个队等等的两个集体. 例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作? 答:乙需要做4天可完成全部工作. 解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是 (18- 2 * 3)÷ 3= 4(天). 解三:甲与乙的工作效率之比是 6∶ 9= 2∶ 3. 甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天). 例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天? 解:共做了6天后, 原来,甲做 24天,乙做 24天, 现在,甲做0天,乙做40=(24+16)天. 这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率 如果乙独做,所需时间是 如果甲独做,所需时间是 答:甲或乙独做所需时间分别是75天和50天. 例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天? 解:先对比如下: 甲做63天,乙做28天; 甲做48天,乙做48天. 就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的 甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做 因此,乙还要做 28+28= 56 (天). 答:乙还需要做 56天. 例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间? 解一:甲队单独做8天,乙队单独做2天,共完成工作量 余下的工作量是两队共同合作的,需要的天数是 2+8+ 1= 11(天). 答:从开始到完工共用了11天. 解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作 (30- 3 * 8- 1* 2)÷(3+1)= 1(天). 解三:甲队做1天相当于乙队做3天. 在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2*3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量. 4=3+1, 其中3天可由甲队1天完成,因此两队只需再合作1天. 例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天? 解一:如果16天两队都不休息,可以完成的工作量是 由于两队休息期间未做的工作量是 乙队休息期间未做的工作量是 乙队休息的天数是 答:乙队休息了5天半. 解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份. 两队休息期间未做的工作量是 (3+2)*16- 60= 20(份). 因此乙休息天数是 (20- 3 * 3)÷ 2= 5.5(天). 解三:甲队做2天,相当于乙队做3天. 甲队休息3天,相当于乙队休息4.5天. 如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是 16-6-4.5=5.5(天). 例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天? 解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙. 设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份. 8天,李就能完成甲工作.此时张还余下乙工作(60-4*8)份.由张、李合作需要 (60-4*8)÷(4+3)=4(天). 8+4=12(天). 答:这两项工作都完成最少需。
3.工程类问题的公式有哪些
(1)一般公式: 工效*工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷ 工作时间=工作效率(2)用假设工作总量为“1”的方法解工程问题的公式: 1÷工作时间=单位时间内完成工作总量的几分之几; 1÷单位时间能完成的几分之几=工作时间。 (注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)1、每份数*份数=总数 总数÷每份数=份数总数÷份数=每份数 总数÷总份数=平均数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、加数+加数=和 和-一个加数=另一个加数 6、被减数-减数=差 被减数-差=减数 差+减数=被减数 7、因数*因数=积 积÷一个因数=另一个因数 8、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 数学图形计算公式 1、正方形:C-周长 S-面积 a-边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a=a2 2、正方体:V-体积 a-棱长 表面积=棱长*棱长*6 S表=a*a*6=6a2 体积=棱长*棱长*棱长 V=a*a*a=a3 3、长方形: C-周长 S-面积 a-边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体:V-体积 S-面积 a-长 b-宽 h-高 表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) 体积=长*宽*高 V=abh 5、三角形:S-面积 a-底 h-高 面积=底*高÷2 S=ah÷2 三角形高=面积*2÷底 三角形底=面积*2÷高 6、平行四边形:S-面积 a-底 h-高 面积=底*高 S=ah 7、梯形:S-面积 a-上底 b-下底 h-高 面积=(上底+下底)*高÷2 8、圆形:S-面积 C-周长 ∏-圆周率 d-直径 r-半径 周长=直径*圆周率=2*圆周率*半径 C=∏d=2∏r 面积=半径*半径*圆周率 S=∏r2 9、圆柱体:V-体积 h-高 S-底面积 r-底面半径 C-底面周长 侧面积=底面周长*高 S侧=Ch 表面积=侧面积+底面积*2 S表=S侧+2∏r2 体积=底面积*高 V=∏r2h 体积=侧面积÷2*半径 10、圆锥体:V-体积 h-高 S-底面积 r-底面半径 体积=底面积*高÷3 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 1、非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2、封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣 利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%) 长度单位换算 1千米(km)=1000米(m) 1米(m)=10分米(dm) 1分米(dm)=10厘米(cm) 1米(m)=100厘米(cm) 1厘米(cm)=10毫米(mm) 面积单位换算 1平方千米(km2)=100公顷(ha) 1公顷(ha)=10000平方米(m2) 1平方米(m2) =100平方分米(dm2) 1平方分米(dm2)=100平方厘米(cm2) 1平方厘米(cm2)=100平方毫米(mm2) 体(容)积单位换算 1立方米(m3)=1000立方分米(dm3) 1立方分米(dm3)=1000立方厘米(cm3) 1立方分米(dm3)=1升(l) 1立方厘米(cm3) =1毫升(ml) 1立方米(m3) =1000升(l) 重量单位换算 1吨(t)=1000 千克(kg) 1千克(kg)=1000克(g) 1千克(kg)=1公斤(kg) 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年 2月28天, 闰年 2月29天 平年全年365天, 闰年全年366天 1日=24小时(h) 1小时(h)=60分(s) 1分(min)=60秒(s)。
4.工程类问题的公式有哪些
(1)一般公式: 工效*工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷ 工作时间=工作效率 (2)用假设工作总量为“1”的方法解工程问题的公式: 1÷工作时间=单位时间内完成工作总量的几分之几; 1÷单位时间能完成的几分之几=工作时间。 (注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)1、每份数*份数=总数 总数÷每份数=份数总数÷份数=每份数 总数÷总份数=平均数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、加数+加数=和 和-一个加数=另一个加数 6、被减数-减数=差 被减数-差=减数 差+减数=被减数 7、因数*因数=积 积÷一个因数=另一个因数 8、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 数学图形计算公式 1、正方形:C-周长 S-面积 a-边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a=a2 2、正方体:V-体积 a-棱长 表面积=棱长*棱长*6 S表=a*a*6=6a2 体积=棱长*棱长*棱长 V=a*a*a=a3 3、长方形: C-周长 S-面积 a-边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体:V-体积 S-面积 a-长 b-宽 h-高 表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) 体积=长*宽*高 V=abh 5、三角形:S-面积 a-底 h-高 面积=底*高÷2 S=ah÷2 三角形高=面积*2÷底 三角形底=面积*2÷高 6、平行四边形:S-面积 a-底 h-高 面积=底*高 S=ah 7、梯形:S-面积 a-上底 b-下底 h-高 面积=(上底+下底)*高÷2 8、圆形:S-面积 C-周长 ∏-圆周率 d-直径 r-半径 周长=直径*圆周率=2*圆周率*半径 C=∏d=2∏r 面积=半径*半径*圆周率 S=∏r2 9、圆柱体:V-体积 h-高 S-底面积 r-底面半径 C-底面周长 侧面积=底面周长*高 S侧=Ch 表面积=侧面积+底面积*2 S表=S侧+2∏r2 体积=底面积*高 V=∏r2h 体积=侧面积÷2*半径 10、圆锥体:V-体积 h-高 S-底面积 r-底面半径 体积=底面积*高÷3 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 1、非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2、封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣 利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%) 长度单位换算 1千米(km)=1000米(m) 1米(m)=10分米(dm) 1分米(dm)=10厘米(cm) 1米(m)=100厘米(cm) 1厘米(cm)=10毫米(mm) 面积单位换算 1平方千米(km2)=100公顷(ha) 1公顷(ha)=10000平方米(m2) 1平方米(m2) =100平方分米(dm2) 1平方分米(dm2)=100平方厘米(cm2) 1平方厘米(cm2)=100平方毫米(mm2) 体(容)积单位换算 1立方米(m3)=1000立方分米(dm3) 1立方分米(dm3)=1000立方厘米(cm3) 1立方分米(dm3)=1升(l) 1立方厘米(cm3) =1毫升(ml) 1立方米(m3) =1000升(l) 重量单位换算 1吨(t)=1000 千克(kg) 1千克(kg)=1000克(g) 1千克(kg)=1公斤(kg) 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年 2月28天, 闰年 2月29天 平年全年365天, 闰年全年366天 1日=24小时(h) 1小时(h)=60分(s) 1分(min)=60秒(s)。
5.初一解方程应用题的所有公式
速度X时间=路程
工效X时间=工作总量
单价X数量=总价
单产量X数量=总产量
ax²+bx+c=0
当b²-4ac>=0时有两个根
x1=(-b+√(b²-4ac))/2a
x2=(-b-√(b²-4ac))/2a
当b²-4ac<0时
x1=x2=-b/2a
V静+V风=V顺
V静-V风=V逆
工效和X时间=工作总量(用于合做工程时)
溶液X浓度=溶质
转载请注明出处问题百科 » 关于初中工程问题公式